黄荣怀丨优化学校准入机制,促进人工智能大模型融入教育生态
发布部门: 智慧教学   发布时间: 2024-08-29   浏览次数: 629

当前,人工智能大模型具有规模性、泛化性、涌现性、通用性等特性,凭借其强大的文、图、音、视频等多模态内容生成、上下文对话、逻辑推理、数据计算以及任务处理能力,正加速各行各业的智能化变革,为教育数字化转型的纵深发展带来全新契机。如何正确认识和把握人工智能大模型应用于教育引发的观念转变与形态重塑,促进人工智能大模型合理、有序、安全融入教育生态,成为智能时代教育发展的关键议题。

一、 人工智能大模型的迭代进化 正引发教育系统性变革的“自我觉醒”

当前,全球科技创新进入空前密集活跃的时期,新一轮科技革命和产业变革正在重构全球创新版图、重塑全球经济结构。持续迭代的颠覆性技术深刻影响着国家前途命运和人民生活福祉。

教育界主动适应人工智能大模型引发的新浪潮。在目前的教育变革过程中,我们可以明显观察到一个趋势:教育系统正处于从被动接受外部变化转向主动适应并推动内部变革的关键阶段。这种转变标志着教育的“自我觉醒”,意味着教育体系不仅仅是技术和资本等外部驱动的应变者,更是主动变革的主导者。教育部门不仅要关注技术的直接应用,更要理解其背后的教育变革逻辑,以培养适应未来发展的人才。

首先,高等教育正处于变革前沿。高等教育机构正快速整合新技术,不仅以AI助教和智联学习环境等手段改变教学内容的传递方式,促进教学组织形式的创新,还在积极推动跨学科研究和学习,利用AI革新科学研究范式,促进知识的综合和创新应用。

其次,职业教育的变革需求更为迫切。随着市场对技能劳动力的需求持续上升,职业教育成为连接教育与就业的关键桥梁。教育机构和政府部门正在增加对职业教育的投资,强化与行业的合作,以确保课程内容与市场需求适应性联结。

最后,基础教育在强有力的政策引导下,正稳步推进教育数字化转型。各级政府正通过制定有利政策和提供资金支持,推动基础教育的数字化转型,包括建设并应用智慧教育平台、利用大数据和人工智能优化教学和管理过程、强化师生数字素养培训等。

二、 人工智能大模型的深度应用催生人机协同教育新形态

从人机协同视角出发,人工智能大模型无疑为教育形态的系统性转变带来了创新机遇,其对教育的赋能主要体现在人机间的“协同教学”“协同学习”和“协同决策”等方面。

形成多元跨域的人机“协同教学”。人工智能大模型将进一步加速传统“师-生”教学结构向“师-生-机”教学结构过渡发展,各类教育实践场景中的人机关系日趋复杂,呈现人机共存、多维交互的结构特点,带来“人机共教”的教学模式变化。

其一,教学场景拓展。人工智能大模型能够进一步在具体教学场景中突显机器智能的优势,破解教育应用场景的瓶颈。例如,在教育主体创新方面,人形机器人与大模型技术结合形成的具身智能形态,能够提高机器对物理世界的多模态感知、理解适应和自主规划决策能力,实现与真实物理环境的智能交互。在智能教学代理方面,人工智能大模型驱动的智能学习平台、智能导师系统等教学代理工具则能够突破时空限制和教学障碍,为学习者提供高效、即时、自适应的学习支持。

其二,协同层次升级。伴随着技术可处理任务范围的进一步扩大,智能时代的教学实践开始进入由教师智能和机器智能共存、共同主导和控制的智能协同场域,正引发教师角色、知识权威地位和教学设计工作范式的变化。

形成双向赋能的人机“协同学习”。人工智能大模型的教育应用将潜移默化地改变学习者的学习方式,学习者将不仅依靠自身的认知加工,还将通过认知外包方式实现对机器智能的调用,并通过迭代反馈方式提高机器的智能水平,呈现“人机共学”的特征。

一是学习体验优化。人工智能大模型的发展提高了人机交互的智能水平,使得机器能够通过扮演智能导师、智能学伴、学习助手等多种角色,自然采集和分析学习过程中的多模态数据,挖掘学习者内隐的情感变化与认知状态,从而为学习者提供即时情感陪伴、精准学习支持、个性化学习路径规划等服务,优化学习体验。

二是学习机制变化。在学习者与机器共同完成学习活动或任务的情境下,机器开始分担原本全部由人类大脑完成的认知活动,使得学习者可以将人工智能大模型作为认知外包的“外脑”,协同完成对学习内容的理解与处理,并在这个过程中达成人类智能与机器智能的互补增强。

形成安全可信的人机“协同决策”。人工智能大模型的链式突破将进一步引发教育治理体系的模式升级,促使教育治理走向循证决策、数据驱动和人机协同的高层次水平,教育治理的过程也更加科学化、精细化、智慧化,呈现“协同决策”的特征。

其一,教育治理方式转型。人工智能大模型能够对海量教育信息进行感知提取与跨模态处理,深度挖掘教育数据中隐含的规律,有利于实现对教育系统的动态监测、评估和反馈,为教育决策者提供实时、全面、客观的分析。

其二,教育治理思维转变。在人工智能大模型的优势加持下,对海量教育数据进行训练和分析,实现对教育各要素和过程的预测,以指导真实教育实践的发展。这将有助于实现教育治理思维从被动式“应对治理”向主动式“超前治理”的转变。

三、 利用人工智能大模型 构建智慧教育生态的关键举措

持续提升智能时代师生的胜任力。为应对智能时代技术对劳动力就业市场和职业发展前景的冲击,需将培养师生的胜任力置于重要地位,全面提升师生数字化创造力、适应力和生存力。

对于学生而言,一是优化学生数字素养与技能的培育机制。有效开展信息科技课程,培育学生数字素养与技能,并建立数字素养测评与监测体系,动态追踪学生成长的进阶数据,准确描绘其数字素养与技能的发展轨迹。

二是提升学生自主学习能力。鼓励教师在课堂教学中引入主动学习方案,培养学生自我规划、自我监督、自我评价等自主学习的习惯。

三是提升利用智能技术进行学习的效果。人工智能大模型可以在知识获取、自主学习和学习陪伴三个方面发挥作用,帮助学生复习和学习课程内容,为学生提供良好的学习体验,并支持学生对学习时间、任务和过程的管理。

对于教师而言,其一,鼓励教师积极探索与应用智能技术。教师对智能技术的应用存在“觉醒—体验—实践—传播”四个境界,需要鼓励教师主动学习人工智能知识和原理,并利用技术优势赋能自身学习和优化教学工作,积极交流分享应用经验。

其二,培养教师角色转变的自觉意识。学校需依据教师的个性化需求开展教师数字素养与技能培训,持续提升教师的人机协同教学能力,引导教师关注并承担起对学生进行情感补位与品行培育的角色。

其三,开展精准教研,助力教师专业发展。积极利用智能技术采集并分析多类型、多来源、多维度的教育数据,准确了解教师在教学法、学科知识、技术应用等方面的不足,形成有关教学过程的工作总结和分析报告,协助教师开展人机协同式的精准教研,帮助教师更好地了解课堂教学过程,反思教育设计与实践,并促进教学能力的提高。

优化智能产品的学校准入机制。

一是要建立人工智能教育技术产品的全覆盖、差异化准入审查制度。包括产品分类与风险分级,对各类教育智能产品进行细致梳理与学科划分,并将相关产品使用中所关联的时间、地点、人物、资源、功能、学科等要素进行链条化分析,通过严谨的审查和适配流程,确保相关产品都能顺利融入多元教育场景,精准匹配各阶段师生的个性化教学需求。

二是探索全方位、全天候的动态监管机制。包括建立产品的安全性与教育适用性测评机制,开展智能技术产品抽查和日常检查,实行黑、灰、白名单的动态管理办法,以及探索基于应用场景的安全风险预警与应急机制等,做好产品的安全性和有效性评估。

三是探索开发具有更高准确度、逻辑连贯性和教育适配性的教育专用人工智能大模型。不断强化伦理检测,减少错误、偏见或不适宜内容的生成,构建安全、合规、合乎伦理的数字教学环境。

四是健全智能技术产品校园应用的实践指南体系。教育行政主体、实践主体与研究主体联合研制并出台面向学生成长、教师发展和学校转型的智能技术产品应用实践指南,以差异教学、增强教学、协同教学等多元场景为切入点,引导师生合理、合规地使用产品。

有序开展人机协同的教育实践。

一是以数字教学法作为人机协同教学的基本理论支撑。需要锚定有效教学与深度学习,以数字环境优化为基础,以数字资源与新技术应用为手段,以学与教的有效实践为目的,在可信赖的数字化环境中聚焦技术赋能和以学习者为中心的学习。

二是深化人机协同的教学机制研究。进一步强化人机协同教学机理研究,利用多学科融合与交叉的方法,探寻人机协同教学中的教学行为及“师-机-生”复杂交互规律,丰富人机协同教学的理论体系。并以循证为导向,系统性评估人机协同教学的综合影响,基于证据迭代优化人机协同教学的结构与程序。

三是发布人机协同教学实践指南和教学标准。促进教师在学情分析、资源检索、试题生成、教学设计、评价反馈等教学各环节中应用生成式人工智能技术,同时引导学生合理应用智能技术。

四是做好人机协同教学经验传播。挖掘人机协同教学促进教育质量提升的典型案例,发挥优秀教师的引领示范作用。基于教师真实需求系统部署相关教师培训,进一步推广先进的、可迁移的、优质的人机协同教学实践经验。

制定生成式人工智能教育应用标准。为避免引发难以预料的技术风险,保护辨别能力缺乏、有待培养和成长的学习者群体,需要注重技术在教育应用过程中的伦理原则和服务规范,制定相关教育服务标准。

一是技术标准。技术标准具有明显的基础性、通用性和先导性特征。相关技术标准包括但不限于以下方面:平台架构需确保系统的稳定性和扩展性;访问入口需保证用户的便捷性和安全性;产权管理需明确内容的归属权和使用权限等等。

二是质量标准。质量标准体系应能衡量生成式人工智能平台的价值、效率和效益。相关质量标准包括但不限于以下方面:定期测试和评估模型的准确性与稳定性;确保数据来源的可靠性和多样性;监控生成内容的准确性、相关性和适用性;评估应用效果,确保技术能有效支持教学目标;等等。

三是服务标准。服务标准应涵盖技术服务、内容确权、规范指引、问题反馈等方面,规范生成式人工智能在教育领域的应用范围与指引,明确使用范围、对象和场景,提出师生使用指引,并提供详细的操作指南和最佳实践。

构建大模型技术安全与伦理规范体系。

一是建立健全监管体系,提升外部监督监管力度。制定并实施相关政策,对大模型的设计开发和应用进行有效引导和管理。保护数据安全和隐私,防止数据泄露、未经授权的访问和其他形式的隐私侵犯。实施数据治理和可信计算,制定严格的数据加密标准,开展常规的安全审计和风险评估。

二是增强大模型研发机构和人员的责任意识。从技术发展角度,需要增强人工智能系统设计和应用的可追溯性与决策程序的可解释性,设计透明的算法框架,记录和追踪决策过程,提供详细的算法解释文档。从社会应用角度,需要加强行业自律,采用可信准则嵌入,预防、监测和消除任何形式的歧视与偏见,建立行业标准和自律公约,定期发布透明度报告。

三是加强大模型技术使用者的自我约束和应用规范。大模型技术的使用需要遵守数据与网络安全法律法规,合理且负责任地应用技术,避免任何非法或不道德的行为,不以任何形式侵害他人隐私,避免数据滥用。通过内部培训和宣传,提高使用者的法律意识和道德责任感,建立监管和投诉机制。(文章摘自微信公众号北京信息化产业联盟)